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Wind energy

Wind speed prediction is crucial for enhancing wind energy utilization and optimizing grid integration of
wind power. Its chaotic nature and the lack of correlated variables make accurate prediction difficult. Most
studies rely solely on past wind speed, limiting accuracy improvements. While wind power is highly correlated
with wind speed, this correlation is reversely causal. The key challenge is effectively leveraging this reverse
causality between wind power and wind speed to enhance prediction precision. This study proposed SMAMnet
to address the challenge mentioned, a model that establishes its backbone network via proposed new attention
mechanism. The convolution operation is employed to restructure features, besides, the frequency-domain
transformation and selective state space model (SSM) serves for attention weights. The novelty of SMAMnet
is characterized by the development of an adaptive frequency-domain selected attention weight operator to
adaptively parse meaningful information in different frequency domain intervals. Taking 15 min and 1-hour
mean absolute error as the standard, the actual wind speed prediction error is reduced by 68% and 49%
compared with the classic LSTM algorithm. The feasibility of mining reverse causality to improve prediction

accuracy was verified.

1. Introduction

The over-exploitation and combustion of fossil fuels [1] have pre-
cipitated a host of environmental issues, propelling the utilize of re-
newable energy into the forefront of research [2]. Wind energy stands
out as a sustainable and clean alternative [3], with wind power gen-
eration being an important application [4]. Nevertheless, wind speed
is characterized by its intermittency, volatility, and instability [5,6],
leading to correspondingly fluctuant wind power output [7]. This char-
acteristic imposes challenges on the power system, requiring redun-
dant backup capacity and consequently increasing construction and
operational costs [8,9].

To address these challenges, accurately predicting wind speed offers
a promising solution [10,11]. Such predictions provide foresight for
the operation of wind turbines and the scheduling of wind power,
thereby enhancing the availability and reliability of wind energy [12].
Consequently, enhancing the precision of wind speed prediction and the
temporal scope of these predictions are crucial for the widespread adop-
tion of wind power generation [13]. Nonetheless, the non-stationary
nature of wind poses significant difficulties in achieving high-precision
wind speed prediction [14,15].

In early research, four primary methodologies were employed [16]:
physical modeling, statistics [17], traditional machine learning, and
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deep learning [18,19]. Physical modeling uses parameters such as
numerical weather prediction (NWP), topographical data, and mete-
orological variables to construct complex mathematical and physical
models for wind speed prediction [20,21]. This method is lauded for
its interpretability [22] but necessitates extensive data and compu-
tational resources. The accuracy of NWP, however, is compromised
by uncertainties in model equations, physical approximations, and
initial and boundary conditions [23], potentially leading to signifi-
cant prediction errors from minor NWP deviations [24]. Statistical
methods, on the other hand, involve fitting functions based on the
correlations between wind speed data and associated factors [25].
Notably, autoregressive moving average (ARMA) [26] and autoregres-
sive integrated moving average (ARIMA) [27] are frequently utilized
statistical models. These methods, however, struggle with capturing
the nonlinear relationships among meteorological elements, resulting
in limited prediction accuracy that often falls short of the requirements
for wind farm operations [28].

Traditional machine learning approaches for wind speed prediction
include support vector machines (SVM) [29], least squares support
vector machines (LSSVM) [30], Gaussian process regression [31], and
various hybrid models [32-35], etc. Despite their utility, these methods
are limited in their ability to extract temporal dependencies and deep
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Fig. 1. Graphical representation of the correlation between wind speed and wind power for different frequency intervals. The low-frequency component is dominant in amplitude

and shows strong correlation, as evidenced by both parts of the analysis.

nonlinear features from wind speed data [36]. In response to these
limitations, numerous deep learning architectures have been applied
to wind speed prediction [37,38], including long short-term memory
networks (LSTM) [39] and time-frequency recurrent networks [40].
The sequential nature of recurrent neural network (RNN), however,
limits parallel computation, prompting researchers to explore models
based on attention mechanisms, such as the transformer [41] and
multi-resolution interactive transformer [42]. To address the quadratic
computational complexity inherent in transformer models, alternatives
like Fastformer [43], which employs linear attention, and Mamba [44],
grounded in the state space model (SSM), have been introduced. While
deep learning models are well-suited for mining patterns in multivari-
ate, nonlinear data, the challenge of wind speed prediction is often
complicated by a scarcity of relevant predictive variables.

A primary challenge stems from the scarcity of effective auxiliary
variables in wind speed prediction. Many potential variables show
minor correlation with wind speed [45,46], forcing models to largely
bypass multivariate analysis. This often results in a reliance on his-
torical wind speed data [47,48], a significant constraint. Most studies
only use a single variable of wind speed, which limits the further
improvement of prediction accuracy. Data analysis has revealed a
strong correlation between wind turbine power output and wind speed.
However, this relationship is unidirectional: wind speed influences
wind turbine power, but not vice-versa, especially the difference of cut-
in and cutoff wind speeds in wind turbine controllers. This suggests a
reverse causal relationship, which makes it difficult to use wind power
as an auxiliary variable.

The conceptualization of reverse causality in predictive models is
challenging, where the physical meaning is difficult to explain. To the
best of the author’s knowledge, this approach has not been explored in
wind speed research. Consequently, it is worth considering whether in-
corporating wind turbine power as an auxiliary variable could enhance
the precision of wind speed predictions, further, choosing a modeling
strategy to effectively utilize the wind power information [49]. In other
words, the interesting question arises: how can we optimally leverage
wind turbine power data to improve wind speed prediction?

The motivation for this research arises from the observed similarity
between wind turbine power and wind speed data across various
frequencies. Fig. 1 illustrates the frequency spectrum of each variable
in wind turbine power and wind speed data following variational
mode decomposition (VMD) decomposition. Drawing inspiration from
this observation, a frequency domain selection attention operator was
developed that adaptively identifies the mapping relationships between
related frequencies. Then, the memory effect subsequent to the fre-
quency domain selection by incorporating hidden states was consid-
ered. Recognizing the inconsistent influence of various variables, a
convolution operator was employed to reconstruct the original data
based on their respective weights. The comprehensive solution was

then modeled within the attention mechanism framework that can be
computed in parallel.
Our contributions are as follows:

The SMAMnet was proposed, incorporating a novel selective
memory attention mechanism specifically designed to leverage
the reverse causality inherent in wind speed prediction tasks.
The utility of employing wind turbine power as an auxiliary vari-
able for wind speed prediction was validated, thereby mitigating
the challenge of limited data availability inherent to this field.
An innovative strategy for calculating attention weights was de-
veloped, integrating the memory effect characteristic of state
space models with frequency-domain selection capabilities. This
approach enables the adaptive parsing of salient information
across distinct frequency domain intervals.

The proposed method demonstrates not only high prediction
accuracy but is also engineered for parallel computation, signifi-
cantly enhancing its practical applicability.

The accuracy of the proposed method was verified through real-
world data, and its potential for engineering applications was demon-
strated by high-precision predictions for 15 min and 1 h.

The rest of the paper is organized as follows: Section 2 outlines the
problem and the method related to this research. Section 3 describes
the proposed SMAMnet model. Section 4 elaborates on the experimen-
tal design and the dataset utilized. Section 5 presents an analysis of
the experimental results. Finally, Section 6 concludes the paper and
discusses future research plans.

2. Preliminary
2.1. Variable exploration

The C-C method was used to calculate the optimal delay time
of wind speed, r=13. Then, the Lyapunov-Wolf method was used to
calculate that the maximum Lyapunov exponent of the wind speed time
series is 0.064(positive), which means that the wind speed time series
belongs to a chaotic time series.

Assume that the original wind speed time series is X ¢(7,) and the
corresponding wind power time series is X p(f,), where 7, represents
time step. Through the VMD method, we decompose these two time
series into eight subsequences, labeled S ;(z,) and P,;(t;), respectively,
where i =1,2,...,8.

Please note that VMD is applied solely during the data analysis
stage to illustrate the data characteristics and is not incorporated into
the actual modeling process. And the division of subsequences is not
rigidly fixed at 8 groups. In practice, the number of subsequences can
be adaptively modified to optimize matching accuracy as required.
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For each subsequence S,(7,) and P,(r,), we calculate its Fourier
transform .Z[S,;(t,)] and .#[P,(t,)] to obtain the spectrum. The spec-
trum can be expressed as:

Ss(f) = 1Z1S,; 0l Sp(fi) = | F [Pyl (€Y

where f; is the frequency, S¢(f;) and Sp(f;) are the spectra of the wind
speed and wind power subsequences, respectively.

As shown in the right part of Fig. 1, for all i, f; < f, < - < fs,
that is, the subsequences are arranged from low to high frequency.
Due to the large difference in spectrum amplitude, the vertical axis
is represented by logarithmic coordinates. Since the sampling interval
is 15 min, the frequency is generally low, so the frequency on the
horizontal axis represents a relative value.

To quantify the relationship between the wind speed and wind
power subsequences, the Pearson correlation coefficient for each cor-
responding pair is computed. The left panel of Fig. 1 reveals that in
the low-frequency range, the correlation coefficients for the top three
pairs of wind speed and wind power subsequences are 0.976, 0.824,
and 0.662, respectively, signifying a strong correlation. Conversely, in
the high-frequency range, the correlation coefficients for the remaining
five pairs are all below 0.2, suggesting that the data in these frequency
ranges are largely uncorrelated.

This results indicate that the wind power data contains the vari-
ation pattern of wind speed, which worth further investigation. Thus,
frequency domain adaptive selection emerges as a promising approach.

2.2. Selective state space models

State space models have emerged as a class of promising methods
for sequence modeling. For example, the recently proposed Mamba
[44] model is a selective state space-based sequence modeling method
with linear time complexity.

In the Mamba architecture, compared with the traditional state
space model, an interesting design is the selection mechanism to filter
out irrelevant information and remember relevant information indef-
initely. First, we introduce the state space model. The inspiration for
the state space model comes from mapping a system through its hidden
state h(r) € RN to a function or sequence x(f) € R — y(t) € R. The four
parameters (4, A, B, C) in the model are defined:

h, = Ah,_, + Bx,, 2
y; =Ch,, 3
X = (CB.CAB,....CA'B....), )
y=Xx=x* ?, 5)

where k represents the discretized time step. The calculation method
of 4 is A, = softplus(Linear(x,)). The continuous parameter (4, A, B) can
be mapped to the discrete parameter (4, B) by the fixed formulas:

A = exp(4A), (6)
B = (4A)"'(exp(44) — I) - AB. )

Then, the selective mechanism used in the Mamba model is intro-
duced. The background of this method is derived from the thinking
of sequence modeling, that is, to selectively compress the necessary
context information into a limited state. In this way, the trade-off
between the efficiency and effectiveness of the sequence model depends
on how to compress the context information. The selectivity mechanism
algorithm of the model is described in detail in the literature [44]. The
idea of this selectivity mechanism is to make the parameters that affect
sequence interactions depend on the input.
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2.3. Attention mechanism

The attention mechanism realizes global context modeling and can
be calculated in parallel. Therefore, it is popular in time series model-
ing. The Transformer first proposed the attention mechanism and has
been tested for a long time. For example, the underlying architecture of
the large language model ChatGPT uses Transformer. In order to solve
the problem of quadratic computational complexity, Fastformer was
proposed. Furthermore, the Mamba model also has similar ideas to the
attention mechanism. Coincidentally, the SSM in the previous section
originated from the Mamba model. Therefore, in Fig. 2, the above three
types of models are described, and they are compared and analyzed
below.

(1) Transformer

As shown in Fig. 3 (a), the architecture of Transformer is based
on simulating the pairwise relationship between each element and
other elements. Transformer adopts a multi-head attention mechanism,
where h is the number of scaled dot product attentions, which are
then concatenated together and mapped to the output through the feed
forward network. Specifically, the scaled dot product attention can be
expressed as

—Es
Attention(Q, K, V') = softmax v, (8)
dy
where O, K, and V represent query, key, and value after linear pro-
jection transformation, that is, the expansion and transformation of the

input sequence. In addition, d, is the data dimension.

The calculation process involved in this formula is consistent with
Fig. 3 (a), and the multiplication calculation uses matrix dot multiplica-
tion. First, the query and key are dot-product and then divided by \/d_ R
where 1/d, represents the scale. After that, the softmax function is used
to calculate the attention weight, which is multiplied by the value to
get the output of the scaled dot-product attention.

(2) Fastformer

Although Transformer is a pioneer of the attention mechanism, the
matrix dot product of pairwise relationships brings quadratic computa-
tional complexity, which has attracted many researchers to simplify it.
For example, the basic idea of Fastformer is to use additive attention
to replace the multiplicative attention in Transformer. Therefore, the
difference between Fastformer and Transformer two mainly focuses on
the calculation of attention weights, as shown in Fig. 3 (b).

e (WqTq,-/\/E) Y
o; = Zj]\;l o (quqj/\/E) > q= ;aiqn ©

oo (ve VD)
. k=) pp:. (10)
ZII'V=1 exp <W{Pj/\/g> ; P

The above two formulas are the attention calculation process of
Fastformer that is different from Transformer, where W, and W, rep-
resent the matrices after query and key transformation respectively.

(3) Mamba

The architectural design of the Mamba network is also related to
the attention mechanism. This is because the Mamba architecture is a
variant of the H3 architecture [50] and Gated MLP, as shown in Fig.
3 (c). The H3 architecture integrates the state space model into the
attention mechanism.

B =

3. SMAMnet

In this study, SMAMnet is proposed to solve the problem of wind
speed prediction. The proposed model not only improves the prediction
accuracy but also expands the range of available variables in wind
speed prediction by exploiting reverse causality.

Consider the input X € R™, where n is the number of time steps
and d is the variable dimension. As shown in Fig. 4, the proposed
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Fig. 3. (a) and (b) are the architectures of representative attention mechanisms, including Transformer and Fastformer. (c) describes the relationship between Mamba and the

attention mechanism.

model accepts X and then normalizes it. Subsequently, the model
automatically checks whether X is one-dimension, in other words,
checksd = 1. If d = 1, X is input into the proposed attention model with
improved weight operator, and then Flatten the tensor. After inverse
normalization, the prediction result is output. If d # 1, the difference
from the previous steps is that there is a feature reconstruction module
prior to the attention model. The process can be described as

X, = Flatten(Attention(X,,)), ifd =1, a1

X, = Flatten(Attention(Convfr(X,,))), ifd # 1. (12)

This feature reconstruction module is designed to alleviate the
weight differences between different variables. Specifically, 1 x 1 con-
volution is used to transform different variables separately, and each
variable uses a set of single-channel convolution kernel. That is

X, = Concatenate(Conv, (X,,[-, 11), Conv ., (X;,[, 2]), ..., Conv (X, [-, d])).
13)

The proposed method centers on an attention mechanism equipped
with a novel weight operator, and its architectural foundation resem-
bles the Fastformer. Upon receiving the input features, the method

initiates processing with a linear transformation via a fully connected
layer. It is important to note that the fully connected layer contains
three times the number of neurons as the required number of channels.
Expressed mathematically, assume the input feature is X; € R™F,
the tensor after linear mapping is Z € R”3F, where F is the feature
dimension. That is

Z=W, X, +b,, WeR¥F per¥. 14)

Then the obtained tensor Z is divided into query, key, and value
tensors according to the number of channels, where Q = Z[., : F],
K=Z[.,F:2F],V=Z[,2F : 3F].

The subsequent calculation process of query includes two steps.
First, calculate a set of weights a of query through the softmax function,
and use « to weighted summation to get the tensor q as in Eq. (9). Sec-
ond, calculate q with the selective memory weight operator to obtain
W,. Specifically for the proposed selective memory weight operator,
the process begins by applying FFT (fast fourier transform) to the input
tensor, transitioning it from the time domain to the frequency domain.
Subsequently, a fully connected layer is employed to assign weights to
the various frequency domain tensors, adaptively selecting appropriate
frequency domain information. Following this, the weighted frequency
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Fig. 4. Graphical illustration of the proposed SMAMnet architecture. The primary elements include a feature reconstruction module for handling variable dimensions and an

innovative proposed attention mechanism with new weight operator.

domain data is inverted back to the time domain via IFFT (inverse
fast fourier transform). The resulting time domain information is then
fed into the selective state space model(Selective SSM), where the
embedded selectivity mechanism facilitates the storage of adaptively
selected information within the hidden state. That is
W, = Selective SSM (IFFT (NN¢. (FFT(q)))) . (15)

The subsequent calculation process of key includes three steps. First,
multiply key with W, . Second, calculate § just like «, and get the tensor
k as in Eq. (10). Third, calculate k with the selective memory weight
operator to obtain W,. The vector k is transformed into the frequency
domain via FFT. Subsequently, it undergoes a linear projection using a
fully connected neural network. After that, it is converted back to the
time domain through IFFT. Finally, the resulting vector is computed as
W, using the Selective SSM, as described in Section 2.2. That is
W, = Selective SSM (IFFT (NNg. (FFT(k)))) . (16)

The subsequent calculation process of value includes three steps.
First, multiply value with W). Second, use the fully connected layer to
perform linear projection calculation. Third, the linear transformation

result is added to the query and output. That is

Attention(X,) = Add(NNg (W, - V), Q). 17)

All product operations throughout this process are conducted using
element-wise multiplication. The selective state space model employed
is consistent with that used in recently proposed Mamba, enabling
parallel computation.

The Fourier transform [51] can be used to convert the time series
from the time domain to the frequency domain. The discrete Fourier
transform(DFT) is described by the following formula:

N-1 .
Xe= Y x,e 8™, k=0,1,..,N—1, 1s)
n=0
where x,, X, are the time-domain series and frequency-domain series,
respectively. In addition, N is the length of x,, and j is the imaginary
unit.

The fast fourier transform (FFT) [52] is often used to calculate the
DFT. This study used built-in functions in TensorFlow to calculate FFT
and IFFT (inverse fast fourier transform).

In this paper, the Adam optimizer was used to update the network
parameters during training, and the mean square error (MSE) loss
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function was used for optimization, which is defined as:

n
1
MsE= L3 (1,5,

i=1

19

where 7; is the true value of the time series, p; is the predicted value of
the time series, and » is the length of the time series.

4. Experiment
4.1. Experimental configuration

All deep learning experiments were implemented in Tensorflow
2.10.0 platform and Python 3.12, while machine learning models
used Sklearn 1.0.2. The computer configuration used includes Intel i7-
13700k CPU, Nvidia Quadro A2000 GPU with CUDA 11.2 and 32 GB
RAM.

The number of channels for all deep learning models is set to 24 to
ensure fair comparison, which is consistent with the size of the sliding
window, because 24 sampling points represent 6 h of data fluctuation
in this study. In addition, the learning rate » of the Adam optimizer is
0.001, the batch size is 4096 during training, and the epochs is 2000.
It is worth noting that the above key hyperparameters are applicable
to all compared deep learning models to ensure fairness.

4.2. Description of dataset

The data used in this study comes from a national offshore wind
power research and testing base in Fujian, China. The dataset includes:
basic information of wind farms, meteorological variable data and
actual power data. Meteorological variable data include air pressure,
relative humidity, cloud cover, wind speed, wind direction, temper-
ature, radiation intensity, and precipitation. The actual power data
describes the power output of each wind farm. All data are collected
from January 2022 to January 2024, with a sampling interval of
15 min. The initial 50 days data of a 48MW wind farm is used in
this study, and the training set, validation set, and test set are 35
days, 5 days, 10 days respectively. In order to eliminate unnecessary
rapid random fluctuations and reflect the data patterns, this study
used the Savitzky—Golay filter to smooth the data. Fig. 5 illustrates the
correlation of each variable with the wind speed time series, revealing
a low correlation between wind speed and most variables, except for
wind power.

4.3. Baseline

This study establishes a comprehensive baseline for comparison by
employing a diverse array of models. The machine learning approaches
include support vector machines (SVM), Gaussian processes (GP), and
decision trees (DT). The deep learning models include the classic LSTM,
gate recurrent unit (GRU), temporal convolutional network (TCN),
Transformer, as well as hybrid models CNN-LSTM, CNN-GRU, BiLSTM,
and ConvLSTM. Furthermore, the recently proposed Fnet, Fastformer,
SCINet and Mamba are also involved in the comparison.

Owing to the constraints of manuscript length, we limit our de-
tailed graphical presentation to three representative models beyond
proposed model: GRU (as an RNN variant), Fastformer (as an attention
mechanism-based model), and Mamba (as a state space model).

4.4. Ablation experiments

The ablation experiments consisted of four groups, the feature
reconstruction module is removed, labeled SMAMnet-1; the selective
state space model is removed, labeled SMAMnet-2; the adaptive fre-
quency domain selection module is removed, labeled SMAMnet-3; and
the selective state space model and the adaptive frequency domain
selection module are removed, labeled SMAMnet-4.

4.5. Performance metrics

This study uses six evaluation metrics [53,54] to measure the ac-
curacy of model prediction, including mean absolute error (MAE), root
mean square error (RMSE), mean absolute percentage error (MAPE),
symmetric mean absolute percentage error (SMAPE), Spearman corre-
lation coefficient (p), and coefficient of determination (R2). In addition,
the following formulas are given.

n
1
MAE= 131 .

n
RMSE = % 3 (6-p) (20)

i=1 i=1

n n
MAPE = 100% Y "'__P" SMAPE = 100% 4l , @D
n i= ti i=1 |p1|+|I |)
63 d? "t - ;)
p:l—%, RZ:I_M’ (22)
n (n - 1) Z?:l (ti - t)
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Table 1
The 15-min wind speed prediction results using a single variable between the proposed model and the baseline models.

Category Model MAE RMSE MAPE SMAPE P R?

Model proposed SMAMnet 0.045832 0.060014 0.481401 0.482051 0.999613 0.999317
SVM 0.719856 0.957071 6.809890 6.958154 0.979452 0.826402
GP 0.110704 0.319723 0.908459 0.934778 0.992877 0.980627
DT 0.124754 0.307280 1.099670 1.121439 0.998134 0.982105
LSTM 0.100540 0.125200 1.076634 1.081565 0.998648 0.997029
GRU 0.104025 0.128383 1.130230 1.132501 0.998435 0.996876

Existing model TCN 0.224602 0.253442 2.241757 2.263318 0.997639 0.987826
CNN-LSTM 0.112546 0.146967 1.186666 1.191111 0.998337 0.995906
CNN-GRU 0.097823 0.120621 1.057205 1.058958 0.998654 0.997243
BiLSTM 0.192823 0.237996 2.074023 2.082059 0.994703 0.989265
ConvLSTM 0.122559 0.160361 1.267177 1.269126 0.998111 0.995126
Transformer 0.349071 0.436068 3.719302 3.728290 0.982536 0.963962
Fnet 0.337561 0.414525 3.632974 3.646384 0.983150 0.967434
Fastformer 0.189622 0.233974 2.051442 2.057123 0.994796 0.989625
SCINet 0.381709 0.465931 4.028569 4.043189 0.981799 0.958857
Mamba 0.350890 0.438179 3.738423 3.747411 0.982354 0.963612
SMAMnet-1 0.045832 0.060014 0.481401 0.482051 0.999613 0.999317

Ablation test SMAMnet-2 0.049225 0.066823 0.520520 0.521259 0.999486 0.999154
SMAMnet-3 0.099172 0.127624 1.049177 1.053343 0.998701 0.996913
SMAMnet-4 0.114046 0.149306 1.218474 1.223810 0.998074 0.995775

where #; and p; represent the true value and the predicted value of
the time series, respectively. Besides, » is the length of the time series,
d; is the difference between the actual and predicted values, and 7 is
the mean value of the time series. The values of RMSE, MAE, MAPE
and SMAPE are close to 0, and the values of p and R? are close to 1,
indicating that the model has high accuracy. In addition, the training
and inference times of the proposed model are not the longest and
within a reasonable range, so they are not discussed later.

5. Results and discussion
5.1. The 15 min wind speed prediction using a single variable

Table 1 summarizes the performance differences of 15 min wind
speed prediction between the proposed model and various baseline
models using a single variable. Among the machine learning meth-
ods, GP and DT have advantages and disadvantages under different
prediction error evaluation metrics. Specifically, GP demonstrates a
slight advantage in MAE, MAPE, and SMAPE, whereas DT outper-
forms slightly in RMSE, p, and R?. RMSE weights the error and is
therefore sensitive to some large deviations, which indicates that large
deviations are relatively rare in the prediction error of DT. In deep
learning methods, CNN-GRU achieves the best performance gener-
ally, the inharmonious is that the MAPE and SMAPE of the GP are
lower. Nevertheless, since evaluation metrics have different focuses
and weighting rules, no evaluation metric is completely perfect, which
does not affect the conclusion. Compared with the optimal value of
each evaluation metric of the existing model, the prediction accuracy
of the proposed SMAMnet is reduced by 53.15%, 50.25%, 47.01%
and 48.43% in MAE, RMSE, MAPE and SMAPE respectively, and the
deviations of p and R? relative to the perfect prediction are reduced by
71.25% and 75.23% respectively.

The model architecture analysis reveals that GP and DT within
the machine learning category exhibit higher prediction accuracy, sur-
passing even some deep learning models. This phenomenon may be
alleviated by increasing the number of training epochs or channels
in deep learning models. Among deep learning models, those RNN
variants (e.g., LSTM, GRU, CNN-GRU) generally outperform attention
mechanism and state space models, aligning with previous research.
However, the lack of parallel computing support in RNN constrains
their appeal for research. Consequently, despite RNN seems to perform
superior in sequence modeling tasks, there has been a growing of
research on attention mechanisms and state space models.

Ablation experiments. In the ablation experiment, the prediction
results of SMAMnet-1 are exactly the same as those of the proposed
model, which is because the multivariate feature reconstruction module
is inactive in univariate prediction scenarios. Across all prediction
evaluation metrics, the performance of SMAMnet-2, SMAMnet-3, and
SMAMnet-4 deteriorates sequentially, suggesting that both SSM and
frequency domain selection modules are important and significantly
contribute to the predictive accuracy of the model.

Graphical prediction results. Fig. 6 shows the prediction results
of 15 min wind speed using a single variable for four representative
models, GRU, Fastformer, Mamba and SMAMnet. According to the
comparison between the predicted value and the actual value, GRU,
Fastformer and the proposed SMAMnet can all predict the wind speed
curve well, while the prediction accuracy of Mamba is visually poor.
The above view is also proved by the prediction error curve. Mamba
has the largest prediction error, and the prediction error of SMAM-
net is significantly lower than that of the other three models. The
scatter plot illustrate that the distribution of the predicted value and
the actual value of SMAMnet is almost the same, followed by GRU,
Fastformer appears loose, and Mamba appears significantly scattered,
with a large deviation from the theoretical fitting line. In addition, The
probability distribution of the error show that GRU, Fastformer and
SMAMnet deviate less from the center value, and SMAMnet has the
smallest distribution variance, which is 0.057. In contrast, the distribu-
tion variances of GRU, Fastformer and Mamba increased by 122.81%,
308.77% and 664.91%, respectively. The prediction error of SMAMnet
is close to a normal distribution with notably concentrated pattern. The
above graphical analysis shows that SMAMnet has excellent prediction
performance.

5.2. The 15 min wind speed prediction by adding auxiliary variable

Table 2 describes the performance differences of 15 min wind speed
prediction between the proposed model and the baseline models by
adding auxiliary variable. Among the machine learning methods, DT
has the best prediction accuracy, followed by GP, and SVM is the
worst. Compared with the single variable prediction, a noteworthy
phenomenon has emerged, that is, the prediction accuracy of the
three machine learning methods generally decreases when auxiliary
variables are added. For example, the R? of adding auxiliary variables
is 0.978462, 0.956802, and 0.817865 from high to low, while the R?
of single variables is 0.982105, 0.980627, and 0.826402. This shows
that the ability of machine learning methods to process multivariate
information in wind speed prediction tasks is limited, which means
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Fig. 6. Graphical comparison of 15 min wind speed prediction results using a single variable in different models.
Table 2
The 15-min wind speed prediction results by adding auxiliary variable between the proposed model and the baseline models.
Category Model MAE RMSE MAPE SMAPE P RrR?
Model proposed SMAMnet 0.033604 0.044915 0.354349 0.354671 0.999779 0.999618
SVM 0.785422 0.980321 7.552849 7.781525 0.959856 0.817865
GP 0.194187 0.477423 1.648043 1.708957 0.987306 0.956802
DT 0.136873 0.337109 1.207227 1.233719 0.997697 0.978462
LSTM 0.105797 0.140930 1.145893 1.149802 0.998057 0.996236
GRU 0.107044 0.133096 1.145653 1.147560 0.998356 0.996643
Existing model TCN 0.210137 0.265455 2.245054 2.257188 0.993908 0.986645
CNN-LSTM 0.125372 0.161987 1.341898 1.343509 0.997701 0.995027
CNN-GRU 0.134849 0.165665 1.443147 1.445695 0.997330 0.994799
BiLSTM 0.173065 0.219454 1.831705 1.830260 0.995711 0.990873
ConvLSTM 0.135590 0.170779 1.454889 1.460994 0.997408 0.994473
Transformer 0.366707 0.486179 3.909944 3.926478 0.977702 0.955203
Fnet 0.260477 0.351785 2.764175 2.758765 0.987999 0.976546
Fastformer 0.194086 0.243137 2.088560 2.094277 0.994395 0.988796
SCINet 0.252809 0.326598 2.769273 2.763505 0.989176 0.979784
Mamba 0.423232 0.557355 4.511092 4.529485 0.971747 0.941126
SMAMnet-1 0.041287 0.052635 0.430525 0.431339 0.999713 0.999475
Ablation test SMAMnet-2 0.038257 0.049716 0.397457 0.397990 0.999724 0.999532
SMAMnet-3 0.089080 0.115667 0.944838 0.947261 0.998851 0.997464
SMAMnet-4 0.146545 0.202981 1.510757 1.511925 0.997133 0.992191

that it is not easy to deeply explore the correlation between multiple and the deviations of p and R? relative to the perfect prediction are

variables. In deep learning methods, GRU has the best performance
overall, the inconsistency is that the MAE of LSTM is lower. Neverthe-
less, compared with the MAE (0.134849) of CNN-GRU, which has the
highest prediction accuracy for a single variable, the difference in MAE
between LSTM and GRU is minimal.

Compared with each optimal metric of baseline models, the predic-

tion accuracy of the proposed SMAMnet is reduced by 68.24%, 66.25%,
69.07% and 69.09% in MAE, RMSE, MAPE and SMAPE respectively,

reduced by 86.56% and 88.62% respectively. Moreover, the predic-
tion accuracy of the proposed model is further improved after adding
auxiliary variables. For instance, in the case of a single variable, the
MAE and RMSE of the proposed model are 0.045832 and 0.060014
respectively. After adding auxiliary variables, the MAE and RMSE are
reduced by 26.68% and 25.16% respectively.

Compared with the best results obtained by machine learning mod-
els, the prediction accuracy of five groups of deep learning models
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Fig. 7. Graphical comparison of 15 min wind speed prediction results by adding auxiliary variable in different models.
Table 3
The 1-h wind speed prediction results using a single variable between the proposed model and the baseline models.
Category Model MAE RMSE MAPE SMAPE P R?
Model proposed SMAMnet 0.190326 0.253144 2.064179 2.068763 0.993562 0.987865
SVM 0.759405 1.025385 7.000471 7.231761 0.949208 0.800894
GP 0.529790 0.803059 5.302893 5.368856 0.948468 0.877875
DT 0.439441 0.666314 4.306066 4.392537 0.972694 0.915925
LSTM 0.285795 0.353177 3.049839 3.086714 0.989832 0.976379
GRU 0.289832 0.359208 3.101312 3.123040 0.989020 0.975566
Existing model TCN 0.332334 0.400444 3.373073 3.429566 0.991919 0.969634
CNN-LSTM 0.272447 0.343030 2.924772 2.948266 0.989764 0.977717
CNN-GRU 0.263778 0.323311 2.844467 2.856069 0.990663 0.980205
BiLSTM 0.397341 0.482546 4.289181 4.317809 0.978893 0.955905
ConvLSTM 0.303737 0.375626 3.278175 3.302283 0.988367 0.973281
Transformer 0.537199 0.654601 5.735056 5.759396 0.959886 0.918855
Fnet 0.531048 0.645670 5.713853 5.746755 0.959899 0.921054
Fastformer 0.404414 0.491915 4.366010 4.387177 0.977626 0.954176
SCINet 0.578818 0.699685 6.150427 6.212588 0.956261 0.907292
Mamba 0.539039 0.656759 5.754175 5.778478 0.959570 0.918319
SMAMnet-1 0.190326 0.253144 2.064179 2.068763 0.993562 0.987865
Ablation test SMAMnet-2 0.210412 0.279591 2.284014 2.285861 0.992048 0.985197
SMAMnet-3 0.262528 0.333769 2.809857 2.833339 0.990949 0.978904
SMAMnet-4 0.295383 0.383006 3.123366 3.152468 0.988214 0.972221

(LSTM, GRU, CNN-LSTM, CNN-GRU, ConvLSTM) is outstanding. No-
tably, the top five deep learning models in terms of prediction ac-
curacy are all RNN-based variants. Despite RNN perform well, their
inability to compute in parallel constrains their potential for future
advancement. Consequently, the researches are increasingly turning
to attention mechanisms and state space models to enable parallel
computation. Unfortunately, the prediction accuracy of these two types
of parallel calculation methods is not ideal. In contrast, the proposed

model does not contain RNN operators and achieves the highest predic-
tion accuracy. This demonstrates the superiority of the proposed model
from the architecture perspective.

Ablation experiments. In the ablation experiments, the prediction
accuracy of all ablation models decreased, which proves the usefulness
of each component in the proposed model. Specifically, taking MAE as
an example, SMAMnet-2 and SMAMnet-1 have small changes relative
to the proposed model, increasing by 13.85% and 22.86% respectively.
However, SMAMnet-3 and SMAMnet-4 have large changes, increasing
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Fig. 8. Graphical comparison of 1-hour wind speed prediction results using a single variable in different models.
Table 4
The 1-h wind speed prediction results by adding auxiliary variable between the proposed model and the baseline models.
Category Model MAE RMSE MAPE SMAPE P R?
Model proposed SMAMnet 0.154367 0.206250 1.649216 1.649762 0.996310 0.991944
SVM 0.815214 1.003712 8.033816 8.207184 0.945140 0.809222
GP 0.616778 1.002791 6.020964 6.173434 0.913522 0.809572
DT 0.465248 0.649173 4.756994 4.840495 0.969723 0.920195
LSTM 0.302813 0.390367 3.223344 3.264587 0.987458 0.971143
GRU 0.274793 0.340171 2.918523 2.936640 0.989540 0.978087
Existing model TCN 0.356084 0.460734 3.869168 3.840443 0.980193 0.959801
CNN-LSTM 0.318929 0.405780 3.421159 3.365676 0.987898 0.968819
CNN-GRU 0.327253 0.401569 3.501740 3.515513 0.985019 0.969463
BiLSTM 0.378610 0.471890 4.030753 4.057913 0.980238 0.957831
ConvLSTM 0.335659 0.431632 3.525391 3.563393 0.985522 0.964719
Transformer 0.542404 0.690397 5.766334 5.816745 0.956109 0.909737
Fnet 0.441364 0.552441 4.705709 4.712579 0.971386 0.942206
Fastformer 0.398020 0.494798 4.280821 4.302853 0.977427 0.953638
SCINet 0.424737 0.530531 4.602512 4.619109 0.973341 0.946699
Mamba 0.587806 0.748860 6.203721 6.262095 0.949525 0.893803
SMAMnet-1 0.190256 0.248256 2.046860 2.055217 0.994191 0.988329
Ablation test SMAMnet-2 0.193219 0.254240 2.063848 2.075137 0.994146 0.987760
SMAMnet-3 0.249464 0.321775 2.679598 2.693408 0.991159 0.980393
SMAMnet-4 0.320363 0.418456 3.359455 3.369798 0.987033 0.966840

by 165.09% and 336.09% respectively. Note that the MAE of SMAMnet-
2 is lower than that of SMAMnet-1, which means that multivari-

only the prediction accuracy of Mamba is visibly poor, showing a large

ate feature reconstruction significantly benefits information mining.
Compared with the univariate prediction accuracy, both SMAMnet-
1 and SMAMnet-2 exceed the univariate prediction accuracy, which
means that the frequency domain selection module is beneficial to
multivariate information mining, even for reverse causality.

Graphical prediction results. Fig. 7 shows the results of 15 min
wind speed prediction after adding auxiliary variables. Based on the
comparison between the predicted trajectory and the actual trajectory,

10

number of burrs, and other models can predict the wind speed curve
well. The prediction error curve is consistent with the above view.
Mamba has the largest prediction error, and the prediction error curve
of the proposed model is significantly lower than that of the other
models. In the scatter plot, the prediction value of the Mamba model
deviates greatly from the theoretical fitting line, and other rules are
consistent with the 15 min prediction diagram. In the error probability
distribution, SMAMnet has the smallest deviation from the center value,
which is 0.005, and the other models are more than three times higher
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Fig. 9. Graphical comparison of 1-hour wind speed prediction results by adding auxiliary variable in different models.

than it. The distribution variance of SMAMnet is also the smallest,
which is 0.045, and the other models are much higher than this value.
This shows that the prediction error of the proposed model is small and
the most compact. The above graphical analysis shows that SMAMnet
exhibits superior prediction performance.

5.3. The 1-hour wind speed prediction using a single variable

Table 3 summarizes the performance differences of 1-hour wind
speed prediction between the proposed model and the baseline models
using a single variable. Machine learning methods have lagged far
behind deep learning methods. For example, the RMSE of DT, GP,
and SVM are 0.666314, 0.803059, and 1.025385, respectively, while
only SCINet has an RMSE of 0.699685 for deep learning methods, and
the RMSE of other models are all lower than 0.666314. Furthermore,
the RMSE of CNN-GRU is as low as 0.323311, which is 51.48% lower
than the optimal result of machine learning methods (0.666314). This
shows that when it comes to information association of long-distance
correlation, the availability of machine learning models is no longer
comparable to that of deep learning models. Focusing on deep learning
models, CNN-GRU has the best overall performance, the inconsistency
is that TCN has a higher p. TCN and CNN-GRU are the only two models
with p exceeding 0.99.

Compared with optimal metric of each baseline models, the predic-
tion accuracy of the proposed SMAMnet is reduced by 27.85%, 21.70%,
27.43% and 27.57% in MAE, RMSE, MAPE and SMAPE respectively,
and the deviations of p and R? relative to the perfect prediction
are reduced by 20.33% and 38.70% respectively. Compared with the
15 min prediction results, the 1-hour prediction accuracy improvement
percentage of the proposed model seems smaller. This is because the
prediction error of 1 h is higher than that of 15 min.
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Ablation experiments. In the ablation experiment, SMAMnet-1
also has no change, which is consistent with the 15 min predic-
tion results. The prediction accuracy of SMAMnet-2, SMAMnet-3, and
SMAMnet-4 is getting worse in order, indicating that each component
of the proposed model is meaningful and beneficial to the 1-hour
prediction.

Graphical prediction results. Fig. 8 shows the result of 1-hour
wind speed prediction using a single variable. Compared with the
15 min wind speed, the situation does not seem optimistic. From the
comparison between the predicted value and the actual value, the
proposed model can predict the wind speed curve well, but some
prediction results of GRU have burrs, and there is a deviation similar
to translation between the predicted value and the actual value of
Fastformer and Mamba. From the prediction error curve, SMAMnet
has the smallest error. Turning to the scatter plot, the fitting curves
of the predicted value and the true value of all models are deviated,
and the distribution of the predicted value and the true value of the
proposed model is relatively close. Through the quantification of the
error probability distribution, SMAMnet has the smallest deviation from
the center value and the smallest distribution variance, and the other
models have significant increases. Therefore, all these evidences show
that the proposed model has excellent prediction accuracy.

5.4. The 1-hour wind speed prediction by adding auxiliary variable

Table 4 describes the performance differences of 1-hour wind speed
prediction between the proposed model and the baseline models by
adding auxiliary variable. Similar to the 15 min prediction results,
the prediction accuracy of the machine learning method is worse after
adding auxiliary variables. Therefore, the machine learning method is
no longer analyzed in detail. GRU has the best prediction accuracy,
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and no discordant prediction metrics appear. Only some deep learn-
ing models (such as GRU, BiLSTM, and Fnet) have improved their
prediction accuracy after adding auxiliary variables. However, please
note that the prediction accuracy of Fnet and SCINet has increased
relatively significantly after adding auxiliary variables. The MAE of
Fnet has dropped from 0.531048 to 0.441364, and the MAE of SCINet
has dropped from 0.578818 to 0.424737.

Compared with the optimal value of each evaluation metric of the
existing model, the prediction accuracy of the proposed SMAMnet is re-
duced by 43.82%, 39.37%, 43.49% and 43.82% in MAE, RMSE, MAPE
and SMAPE respectively, and the deviations of p and R? relative to the
perfect prediction are reduced by 64.72% and 63.24% respectively. The
1-hour prediction is not as good as the 15 min prediction because of the
higher uncertainty.

Combined with the 1-hour prediction results of a single variable, the
percentage increase in prediction accuracy is significant after adding
auxiliary variables. This is because the baseline model performs or-
dinary after adding auxiliary variables, while the proposed model
achieves higher accuracy. In contrast, the MAE of the proposed model’s
single variable prediction is 0.190326, and after adding auxiliary vari-
ables, the MAE drops to 0.154367, that is, a decrease of 18.89%.
However, the single variable prediction accuracy of the proposed model
is already far ahead, which means that the proposed model is not
only good at mining variable correlations, but the architecture itself
is worthy of attention.

Ablation experiments. In the ablation experiment, the prediction
accuracy of SMAMnet-1, SMAMnet-2, SMAMnet-3, and SMAMnet-4
deteriorated in turn. Taking MAE as an example, they increased by
23.25%, 25.17%, 61.60%, and 107.53% respectively. This means that
the importance of the modules involved in the ablation model increases
in turn. It is worth noting that, unlike the prediction results of adding
auxiliary variables in 15 min, the prediction effect of SMAMnet-2 is
not as good as that of SMAMnet-1, which shows that SSM plays an
important role in relatively long-term predictions. In addition, the
measured data is often heterogeneous, so the data itself will also have
an impact on the modeling process.

Graphical prediction results. Fig. 9 describes the results of adding
auxiliary variables for 1-hour wind speed prediction. Through the
comparison of four types of graphical methods, including comparison
of predicted values with actual values, prediction error curve, scatter
plot and error probability distribution, only SMAMnet meets good
prediction expectations. This shows that the proposed model is most
suitable for 1-hour wind speed prediction tasks.

6. Conclusion

This paper addresses limited variables in wind speed prediction by
proposing the use of reverse causality, incorporating auxiliary vari-
ables like wind power. A high correlation (0.976) was found between
low-frequency wind speed and wind power components. Based on
this, we proposed SMAMnet, a multivariate prediction model featur-
ing an improved attention mechanism and a feature reconstruction
module. Its novelty is characterized by the development of an adap-
tive frequency-domain selected attention weight operator to adaptively
parse meaningful information in different frequency domain intervals.
Experimental results indicate that with the inclusion of auxiliary vari-
ables, SMAMnet significantly enhances the accuracy of both 15 min
and 1-hour wind speed predictions, outperforming the best results of
compared baseline that do not utilize auxiliary variables.

The research is helpful for the wind energy utilization. The limita-
tion is that the universality of adding extra real or simulated auxiliary
variables to univariate time series prediction tasks has not been proven.
In the future, we intend to explore the adaptability of this approach to
other renewable energy fields and widely deployed [55] in wind farms.
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