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 A B S T R A C T

Wind speed prediction is crucial for enhancing wind energy utilization and optimizing grid integration of 
wind power. Its chaotic nature and the lack of correlated variables make accurate prediction difficult. Most 
studies rely solely on past wind speed, limiting accuracy improvements. While wind power is highly correlated 
with wind speed, this correlation is reversely causal. The key challenge is effectively leveraging this reverse 
causality between wind power and wind speed to enhance prediction precision. This study proposed SMAMnet 
to address the challenge mentioned, a model that establishes its backbone network via proposed new attention 
mechanism. The convolution operation is employed to restructure features, besides, the frequency-domain 
transformation and selective state space model (SSM) serves for attention weights. The novelty of SMAMnet 
is characterized by the development of an adaptive frequency-domain selected attention weight operator to 
adaptively parse meaningful information in different frequency domain intervals. Taking 15 min and 1-hour 
mean absolute error as the standard, the actual wind speed prediction error is reduced by 68% and 49% 
compared with the classic LSTM algorithm. The feasibility of mining reverse causality to improve prediction 
accuracy was verified.
1. Introduction

The over-exploitation and combustion of fossil fuels [1] have pre-
cipitated a host of environmental issues, propelling the utilize of re-
newable energy into the forefront of research [2]. Wind energy stands 
out as a sustainable and clean alternative [3], with wind power gen-
eration being an important application [4]. Nevertheless, wind speed 
is characterized by its intermittency, volatility, and instability [5,6], 
leading to correspondingly fluctuant wind power output [7]. This char-
acteristic imposes challenges on the power system, requiring redun-
dant backup capacity and consequently increasing construction and 
operational costs [8,9].

To address these challenges, accurately predicting wind speed offers 
a promising solution [10,11]. Such predictions provide foresight for 
the operation of wind turbines and the scheduling of wind power, 
thereby enhancing the availability and reliability of wind energy [12]. 
Consequently, enhancing the precision of wind speed prediction and the 
temporal scope of these predictions are crucial for the widespread adop-
tion of wind power generation [13]. Nonetheless, the non-stationary 
nature of wind poses significant difficulties in achieving high-precision 
wind speed prediction [14,15].

In early research, four primary methodologies were employed [16]: 
physical modeling, statistics [17], traditional machine learning, and 
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deep learning [18,19]. Physical modeling uses parameters such as 
numerical weather prediction (NWP), topographical data, and mete-
orological variables to construct complex mathematical and physical 
models for wind speed prediction [20,21]. This method is lauded for 
its interpretability [22] but necessitates extensive data and compu-
tational resources. The accuracy of NWP, however, is compromised 
by uncertainties in model equations, physical approximations, and 
initial and boundary conditions [23], potentially leading to signifi-
cant prediction errors from minor NWP deviations [24]. Statistical 
methods, on the other hand, involve fitting functions based on the 
correlations between wind speed data and associated factors [25]. 
Notably, autoregressive moving average (ARMA) [26] and autoregres-
sive integrated moving average (ARIMA) [27] are frequently utilized 
statistical models. These methods, however, struggle with capturing 
the nonlinear relationships among meteorological elements, resulting 
in limited prediction accuracy that often falls short of the requirements 
for wind farm operations [28].

Traditional machine learning approaches for wind speed prediction 
include support vector machines (SVM) [29], least squares support 
vector machines (LSSVM) [30], Gaussian process regression [31], and 
various hybrid models [32–35], etc. Despite their utility, these methods 
are limited in their ability to extract temporal dependencies and deep 
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Fig. 1. Graphical representation of the correlation between wind speed and wind power for different frequency intervals. The low-frequency component is dominant in amplitude 
and shows strong correlation, as evidenced by both parts of the analysis.
nonlinear features from wind speed data [36]. In response to these 
limitations, numerous deep learning architectures have been applied 
to wind speed prediction [37,38], including long short-term memory 
networks (LSTM) [39] and time-frequency recurrent networks [40]. 
The sequential nature of recurrent neural network (RNN), however, 
limits parallel computation, prompting researchers to explore models 
based on attention mechanisms, such as the transformer [41] and 
multi-resolution interactive transformer [42]. To address the quadratic 
computational complexity inherent in transformer models, alternatives 
like Fastformer [43], which employs linear attention, and Mamba [44], 
grounded in the state space model (SSM), have been introduced. While 
deep learning models are well-suited for mining patterns in multivari-
ate, nonlinear data, the challenge of wind speed prediction is often 
complicated by a scarcity of relevant predictive variables.

A primary challenge stems from the scarcity of effective auxiliary 
variables in wind speed prediction. Many potential variables show 
minor correlation with wind speed [45,46], forcing models to largely 
bypass multivariate analysis. This often results in a reliance on his-
torical wind speed data [47,48], a significant constraint. Most studies 
only use a single variable of wind speed, which limits the further 
improvement of prediction accuracy. Data analysis has revealed a 
strong correlation between wind turbine power output and wind speed. 
However, this relationship is unidirectional: wind speed influences 
wind turbine power, but not vice-versa, especially the difference of cut-
in and cutoff wind speeds in wind turbine controllers. This suggests a 
reverse causal relationship, which makes it difficult to use wind power 
as an auxiliary variable.

The conceptualization of reverse causality in predictive models is 
challenging, where the physical meaning is difficult to explain. To the 
best of the author’s knowledge, this approach has not been explored in 
wind speed research. Consequently, it is worth considering whether in-
corporating wind turbine power as an auxiliary variable could enhance 
the precision of wind speed predictions, further, choosing a modeling 
strategy to effectively utilize the wind power information [49]. In other 
words, the interesting question arises: how can we optimally leverage 
wind turbine power data to improve wind speed prediction?

The motivation for this research arises from the observed similarity 
between wind turbine power and wind speed data across various 
frequencies. Fig.  1 illustrates the frequency spectrum of each variable 
in wind turbine power and wind speed data following variational 
mode decomposition (VMD) decomposition. Drawing inspiration from 
this observation, a frequency domain selection attention operator was 
developed that adaptively identifies the mapping relationships between 
related frequencies. Then, the memory effect subsequent to the fre-
quency domain selection by incorporating hidden states was consid-
ered. Recognizing the inconsistent influence of various variables, a 
convolution operator was employed to reconstruct the original data 
based on their respective weights. The comprehensive solution was 
2 
then modeled within the attention mechanism framework that can be 
computed in parallel.

Our contributions are as follows:

• The SMAMnet was proposed, incorporating a novel selective 
memory attention mechanism specifically designed to leverage 
the reverse causality inherent in wind speed prediction tasks.

• The utility of employing wind turbine power as an auxiliary vari-
able for wind speed prediction was validated, thereby mitigating 
the challenge of limited data availability inherent to this field.

• An innovative strategy for calculating attention weights was de-
veloped, integrating the memory effect characteristic of state 
space models with frequency-domain selection capabilities. This 
approach enables the adaptive parsing of salient information 
across distinct frequency domain intervals.

• The proposed method demonstrates not only high prediction 
accuracy but is also engineered for parallel computation, signifi-
cantly enhancing its practical applicability.

The accuracy of the proposed method was verified through real-
world data, and its potential for engineering applications was demon-
strated by high-precision predictions for 15 min and 1 h.

The rest of the paper is organized as follows: Section 2 outlines the 
problem and the method related to this research. Section 3 describes 
the proposed SMAMnet model. Section 4 elaborates on the experimen-
tal design and the dataset utilized. Section 5 presents an analysis of 
the experimental results. Finally, Section 6 concludes the paper and 
discusses future research plans.

2. Preliminary

2.1. Variable exploration

The C–C method was used to calculate the optimal delay time 𝜏
of wind speed, 𝜏=13. Then, the Lyapunov–Wolf method was used to 
calculate that the maximum Lyapunov exponent of the wind speed time 
series is 0.064(positive), which means that the wind speed time series 
belongs to a chaotic time series.

Assume that the original wind speed time series is 𝑋𝑆 (𝑡𝑘) and the 
corresponding wind power time series is 𝑋𝑃 (𝑡𝑘), where 𝑡𝑘 represents 
time step. Through the VMD method, we decompose these two time 
series into eight subsequences, labeled 𝑆𝑣𝑖(𝑡𝑘) and 𝑃𝑣𝑖(𝑡𝑘), respectively, 
where 𝑖 = 1, 2,… , 8.

Please note that VMD is applied solely during the data analysis 
stage to illustrate the data characteristics and is not incorporated into 
the actual modeling process. And the division of subsequences is not 
rigidly fixed at 8 groups. In practice, the number of subsequences can 
be adaptively modified to optimize matching accuracy as required.
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For each subsequence 𝑆𝑣𝑖(𝑡𝑘) and 𝑃𝑣𝑖(𝑡𝑘), we calculate its Fourier 
transform F [𝑆𝑣𝑖(𝑡𝑘)] and F [𝑃𝑣𝑖(𝑡𝑘)] to obtain the spectrum. The spec-
trum can be expressed as: 

𝑆𝑆 (𝑓𝑖) = |F [𝑆𝑣𝑖(𝑡𝑘)]|, 𝑆𝑃 (𝑓𝑖) = |F [𝑃𝑣𝑖(𝑡𝑘)]|, (1)

where 𝑓𝑖 is the frequency, 𝑆𝑆 (𝑓𝑖) and 𝑆𝑃 (𝑓𝑖) are the spectra of the wind 
speed and wind power subsequences, respectively.

As shown in the right part of Fig.  1, for all 𝑖, 𝑓1 < 𝑓2 < ⋯ < 𝑓8, 
that is, the subsequences are arranged from low to high frequency. 
Due to the large difference in spectrum amplitude, the vertical axis 
is represented by logarithmic coordinates. Since the sampling interval 
is 15 min, the frequency is generally low, so the frequency on the 
horizontal axis represents a relative value.

To quantify the relationship between the wind speed and wind 
power subsequences, the Pearson correlation coefficient for each cor-
responding pair is computed. The left panel of Fig.  1 reveals that in 
the low-frequency range, the correlation coefficients for the top three 
pairs of wind speed and wind power subsequences are 0.976, 0.824, 
and 0.662, respectively, signifying a strong correlation. Conversely, in 
the high-frequency range, the correlation coefficients for the remaining 
five pairs are all below 0.2, suggesting that the data in these frequency 
ranges are largely uncorrelated.

This results indicate that the wind power data contains the vari-
ation pattern of wind speed, which worth further investigation. Thus, 
frequency domain adaptive selection emerges as a promising approach.

2.2. Selective state space models

State space models have emerged as a class of promising methods 
for sequence modeling. For example, the recently proposed Mamba 
[44] model is a selective state space-based sequence modeling method 
with linear time complexity.

In the Mamba architecture, compared with the traditional state 
space model, an interesting design is the selection mechanism to filter 
out irrelevant information and remember relevant information indef-
initely. First, we introduce the state space model. The inspiration for 
the state space model comes from mapping a system through its hidden 
state ℎ(𝑡) ∈ R𝑁  to a function or sequence 𝑥(𝑡) ∈ R ↦ 𝑦(𝑡) ∈ R. The four 
parameters (𝛥,𝐴, 𝐵, 𝐶) in the model are defined:

ℎ𝑡 = 𝐴ℎ𝑡−1 + 𝐵𝑥𝑡, (2)

𝑦𝑡 = 𝐶ℎ𝑡, (3)

𝐾 = (𝐶𝐵,𝐶𝐴𝐵,… , 𝐶𝐴
𝑘
𝐵,…), (4)

𝑦 = 𝑥 ∗ 𝐾, (5)

where 𝑘 represents the discretized time step. The calculation method 
of 𝛥 is 𝛥𝑡 = sof tplus(Linear(𝑥𝑡)). The continuous parameter (𝛥,𝐴, 𝐵) can 
be mapped to the discrete parameter (𝐴,𝐵) by the fixed formulas:

𝐴 = exp(𝛥𝐴), (6)

𝐵 = (𝛥𝐴)−1(exp(𝛥𝐴) − 𝐼) ⋅ 𝛥𝐵. (7)

Then, the selective mechanism used in the Mamba model is intro-
duced. The background of this method is derived from the thinking 
of sequence modeling, that is, to selectively compress the necessary 
context information into a limited state. In this way, the trade-off 
between the efficiency and effectiveness of the sequence model depends 
on how to compress the context information. The selectivity mechanism 
algorithm of the model is described in detail in the literature [44]. The 
idea of this selectivity mechanism is to make the parameters that affect 
sequence interactions depend on the input.
3 
2.3. Attention mechanism

The attention mechanism realizes global context modeling and can 
be calculated in parallel. Therefore, it is popular in time series model-
ing. The Transformer first proposed the attention mechanism and has 
been tested for a long time. For example, the underlying architecture of 
the large language model ChatGPT uses Transformer. In order to solve 
the problem of quadratic computational complexity, Fastformer was 
proposed. Furthermore, the Mamba model also has similar ideas to the 
attention mechanism. Coincidentally, the SSM in the previous section 
originated from the Mamba model. Therefore, in Fig.  2, the above three 
types of models are described, and they are compared and analyzed 
below.

(1) Transformer
As shown in Fig.  3 (a), the architecture of Transformer is based 

on simulating the pairwise relationship between each element and 
other elements. Transformer adopts a multi-head attention mechanism, 
where ℎ is the number of scaled dot product attentions, which are 
then concatenated together and mapped to the output through the feed 
forward network. Specifically, the scaled dot product attention can be 
expressed as 

Attention(𝑄,𝐾, 𝑉 ) = softmax
(

𝑄𝐾⊤
√

𝑑𝑘

)

𝑉 , (8)

where 𝑄, 𝐾, and 𝑉  represent query, key, and value after linear pro-
jection transformation, that is, the expansion and transformation of the 
input sequence. In addition, 𝑑𝑘 is the data dimension.

The calculation process involved in this formula is consistent with 
Fig.  3 (a), and the multiplication calculation uses matrix dot multiplica-
tion. First, the query and key are dot-product and then divided by √𝑑𝑘, 
where √𝑑𝑘 represents the scale. After that, the softmax function is used 
to calculate the attention weight, which is multiplied by the value to 
get the output of the scaled dot-product attention.

(2) Fastformer
Although Transformer is a pioneer of the attention mechanism, the 

matrix dot product of pairwise relationships brings quadratic computa-
tional complexity, which has attracted many researchers to simplify it. 
For example, the basic idea of Fastformer is to use additive attention 
to replace the multiplicative attention in Transformer. Therefore, the 
difference between Fastformer and Transformer two mainly focuses on 
the calculation of attention weights, as shown in Fig.  3 (b).

𝛼𝑖 =
exp

(

𝐰𝑇
𝑞 𝐪𝑖∕

√

𝑑
)

∑𝑁
𝑗=1 exp

(

𝐰𝑇
𝑞 𝐪𝑗∕

√

𝑑
) , 𝐪 =

𝑁
∑

𝑖=1
𝛼𝑖𝐪𝑖, (9)

𝛽𝑖 =
exp

(

𝐰𝑇
𝑘 𝐩𝑖∕

√

𝑑
)

∑𝑁
𝑗=1 exp

(

𝐰𝑇
𝑘 𝐩𝑗∕

√

𝑑
) , 𝐤 =

𝑁
∑

𝑖=1
𝛽𝑖𝐩𝑖. (10)

The above two formulas are the attention calculation process of 
Fastformer that is different from Transformer, where 𝑊𝑞 and 𝑊𝑘 rep-
resent the matrices after query and key transformation respectively.

(3) Mamba
The architectural design of the Mamba network is also related to 

the attention mechanism. This is because the Mamba architecture is a 
variant of the H3 architecture [50] and Gated MLP, as shown in Fig. 
3 (c). The H3 architecture integrates the state space model into the 
attention mechanism.

3. SMAMnet

In this study, SMAMnet is proposed to solve the problem of wind 
speed prediction. The proposed model not only improves the prediction 
accuracy but also expands the range of available variables in wind 
speed prediction by exploiting reverse causality.

Consider the input 𝑋 ∈ R𝑛×𝑑 , where 𝑛 is the number of time steps 
and 𝑑 is the variable dimension. As shown in Fig.  4, the proposed 
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Fig. 2. The architecture of a state space model with selection mechanisms.
Fig. 3. (a) and (b) are the architectures of representative attention mechanisms, including Transformer and Fastformer. (c) describes the relationship between Mamba and the 
attention mechanism.
model accepts 𝑋 and then normalizes it. Subsequently, the model 
automatically checks whether 𝑋 is one-dimension, in other words, 
checks 𝑑 = 1. If 𝑑 = 1, 𝑋 is input into the proposed attention model with 
improved weight operator, and then Flatten the tensor. After inverse 
normalization, the prediction result is output. If 𝑑 ≠ 1, the difference 
from the previous steps is that there is a feature reconstruction module 
prior to the attention model. The process can be described as
𝑋𝑜𝑢𝑡 = Flatten(Attention(𝑋𝑖𝑛)),  if 𝑑 = 1, (11)

𝑋𝑜𝑢𝑡 = Flatten(Attention(Convfr(𝑋𝑖𝑛))),  if 𝑑 ≠ 1. (12)

This feature reconstruction module is designed to alleviate the 
weight differences between different variables. Specifically, 1 × 1 con-
volution is used to transform different variables separately, and each 
variable uses a set of single-channel convolution kernel. That is 

𝑋′
𝑖𝑛 = Concatenate(Conv1×1(𝑋𝑖𝑛[⋅, 1]),Conv1×1(𝑋𝑖𝑛[⋅, 2]),… ,Conv1×1(𝑋𝑖𝑛[⋅, 𝑑])).

(13)

The proposed method centers on an attention mechanism equipped 
with a novel weight operator, and its architectural foundation resem-
bles the Fastformer. Upon receiving the input features, the method 
4 
initiates processing with a linear transformation via a fully connected 
layer. It is important to note that the fully connected layer contains 
three times the number of neurons as the required number of channels. 
Expressed mathematically, assume the input feature is 𝑋1 ∈ R𝑛×𝐹 , 
the tensor after linear mapping is 𝑍 ∈ R𝑛×3𝐹 , where 𝐹  is the feature 
dimension. That is 
𝑍 = 𝑊𝑧 ⋅𝑋1 + 𝑏𝑧, 𝑊 ∈ R3𝐹×𝐹 , 𝑏 ∈ R3𝐹 . (14)

Then the obtained tensor 𝑍 is divided into query, key, and value 
tensors according to the number of channels, where Q = 𝑍[⋅, ∶ 𝐹 ], 
K = 𝑍[⋅, 𝐹 ∶ 2𝐹 ], V = 𝑍[⋅, 2𝐹 ∶ 3𝐹 ].

The subsequent calculation process of query includes two steps. 
First, calculate a set of weights 𝛼 of query through the softmax function, 
and use 𝛼 to weighted summation to get the tensor 𝐪 as in Eq.  (9). Sec-
ond, calculate 𝐪 with the selective memory weight operator to obtain 
𝑊𝑞 . Specifically for the proposed selective memory weight operator, 
the process begins by applying FFT (fast fourier transform) to the input 
tensor, transitioning it from the time domain to the frequency domain. 
Subsequently, a fully connected layer is employed to assign weights to 
the various frequency domain tensors, adaptively selecting appropriate 
frequency domain information. Following this, the weighted frequency 
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Fig. 4. Graphical illustration of the proposed SMAMnet architecture. The primary elements include a feature reconstruction module for handling variable dimensions and an 
innovative proposed attention mechanism with new weight operator.
domain data is inverted back to the time domain via IFFT (inverse 
fast fourier transform). The resulting time domain information is then 
fed into the selective state space model(Selective SSM), where the 
embedded selectivity mechanism facilitates the storage of adaptively 
selected information within the hidden state. That is 

𝑊𝑞 = Selective SSM
(

IFFT
(

NNfc (FFT(𝐪))
))

. (15)

The subsequent calculation process of key includes three steps. First, 
multiply key with 𝑊𝑞 . Second, calculate 𝛽 just like 𝛼, and get the tensor 
𝐤 as in Eq.  (10). Third, calculate 𝐤 with the selective memory weight 
operator to obtain 𝑊𝑘. The vector 𝐤 is transformed into the frequency 
domain via FFT. Subsequently, it undergoes a linear projection using a 
fully connected neural network. After that, it is converted back to the 
time domain through IFFT. Finally, the resulting vector is computed as 
𝑊𝑘 using the Selective SSM, as described in Section 2.2. That is 

𝑊𝑘 = Selective SSM (

IFFT
(

NNfc (FFT(𝐤))
))

. (16)

The subsequent calculation process of value includes three steps. 
First, multiply value with 𝑊𝑘. Second, use the fully connected layer to 
perform linear projection calculation. Third, the linear transformation 
5 
result is added to the query and output. That is 

Attention(𝑋1) = Add(NNfc(𝑊𝑘 ⋅ 𝑉 ), 𝑄). (17)

All product operations throughout this process are conducted using 
element-wise multiplication. The selective state space model employed 
is consistent with that used in recently proposed Mamba, enabling 
parallel computation.

The Fourier transform [51] can be used to convert the time series 
from the time domain to the frequency domain. The discrete Fourier 
transform(DFT) is described by the following formula: 

𝑋𝑘 =
𝑁−1
∑

𝑛=0
𝑥𝑛𝑒

− 2𝜋𝑗
𝑁 𝑛𝑘, 𝑘 = 0, 1,… , 𝑁 − 1, (18)

where 𝑥𝑛, 𝑋𝑘 are the time-domain series and frequency-domain series, 
respectively. In addition, 𝑁 is the length of 𝑥𝑛, and 𝑗 is the imaginary 
unit.

The fast fourier transform (FFT) [52] is often used to calculate the 
DFT. This study used built-in functions in TensorFlow to calculate FFT 
and IFFT (inverse fast fourier transform).

In this paper, the Adam optimizer was used to update the network 
parameters during training, and the mean square error (MSE) loss 
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Fig. 5. Graphical illustration of the correlation between different variables and wind speed. The Cor represent Pearson correlation coefficient.
function was used for optimization, which is defined as: 

MSE = 1
𝑛

𝑛
∑

𝑖=1

(

𝑡𝑖 − 𝑝𝑖
)2 , (19)

where 𝑡𝑖 is the true value of the time series, 𝑝𝑖 is the predicted value of 
the time series, and 𝑛 is the length of the time series.

4. Experiment

4.1. Experimental configuration

All deep learning experiments were implemented in Tensorflow 
2.10.0 platform and Python 3.12, while machine learning models 
used Sklearn 1.0.2. The computer configuration used includes Intel i7-
13700k CPU, Nvidia Quadro A2000 GPU with CUDA 11.2 and 32 GB 
RAM.

The number of channels for all deep learning models is set to 24 to 
ensure fair comparison, which is consistent with the size of the sliding 
window, because 24 sampling points represent 6 h of data fluctuation 
in this study. In addition, the learning rate 𝜂 of the Adam optimizer is 
0.001, the batch size is 4096 during training, and the epochs is 2000. 
It is worth noting that the above key hyperparameters are applicable 
to all compared deep learning models to ensure fairness.

4.2. Description of dataset

The data used in this study comes from a national offshore wind 
power research and testing base in Fujian, China. The dataset includes: 
basic information of wind farms, meteorological variable data and 
actual power data. Meteorological variable data include air pressure, 
relative humidity, cloud cover, wind speed, wind direction, temper-
ature, radiation intensity, and precipitation. The actual power data 
describes the power output of each wind farm. All data are collected 
from January 2022 to January 2024, with a sampling interval of 
15 min. The initial 50 days data of a 48MW wind farm is used in 
this study, and the training set, validation set, and test set are 35 
days, 5 days, 10 days respectively. In order to eliminate unnecessary 
rapid random fluctuations and reflect the data patterns, this study 
used the Savitzky–Golay filter to smooth the data. Fig.  5 illustrates the 
correlation of each variable with the wind speed time series, revealing 
a low correlation between wind speed and most variables, except for 
wind power.
6 
4.3. Baseline

This study establishes a comprehensive baseline for comparison by 
employing a diverse array of models. The machine learning approaches 
include support vector machines (SVM), Gaussian processes (GP), and 
decision trees (DT). The deep learning models include the classic LSTM, 
gate recurrent unit (GRU), temporal convolutional network (TCN), 
Transformer, as well as hybrid models CNN-LSTM, CNN-GRU, BiLSTM, 
and ConvLSTM. Furthermore, the recently proposed Fnet, Fastformer, 
SCINet and Mamba are also involved in the comparison.

Owing to the constraints of manuscript length, we limit our de-
tailed graphical presentation to three representative models beyond 
proposed model: GRU (as an RNN variant), Fastformer (as an attention 
mechanism-based model), and Mamba (as a state space model).

4.4. Ablation experiments

The ablation experiments consisted of four groups, the feature 
reconstruction module is removed, labeled SMAMnet-1; the selective 
state space model is removed, labeled SMAMnet-2; the adaptive fre-
quency domain selection module is removed, labeled SMAMnet-3; and 
the selective state space model and the adaptive frequency domain 
selection module are removed, labeled SMAMnet-4.

4.5. Performance metrics

This study uses six evaluation metrics [53,54] to measure the ac-
curacy of model prediction, including mean absolute error (MAE), root 
mean square error (RMSE), mean absolute percentage error (MAPE), 
symmetric mean absolute percentage error (SMAPE), Spearman corre-
lation coefficient (𝜌), and coefficient of determination (𝑅2). In addition, 
the following formulas are given.
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Table 1
The 15-min wind speed prediction results using a single variable between the proposed model and the baseline models.
 Category Model MAE RMSE MAPE SMAPE 𝜌 𝑅2  
 Model proposed SMAMnet 0.045832 0.060014 0.481401 0.482051 0.999613 0.999317 
 

Existing model

SVM 0.719856 0.957071 6.809890 6.958154 0.979452 0.826402  
 GP 0.110704 0.319723 0.908459 0.934778 0.992877 0.980627  
 DT 0.124754 0.307280 1.099670 1.121439 0.998134 0.982105  
 LSTM 0.100540 0.125200 1.076634 1.081565 0.998648 0.997029  
 GRU 0.104025 0.128383 1.130230 1.132501 0.998435 0.996876  
 TCN 0.224602 0.253442 2.241757 2.263318 0.997639 0.987826  
 CNN-LSTM 0.112546 0.146967 1.186666 1.191111 0.998337 0.995906  
 CNN-GRU 0.097823 0.120621 1.057205 1.058958 0.998654 0.997243 
 BiLSTM 0.192823 0.237996 2.074023 2.082059 0.994703 0.989265  
 ConvLSTM 0.122559 0.160361 1.267177 1.269126 0.998111 0.995126  
 Transformer 0.349071 0.436068 3.719302 3.728290 0.982536 0.963962  
 Fnet 0.337561 0.414525 3.632974 3.646384 0.983150 0.967434  
 Fastformer 0.189622 0.233974 2.051442 2.057123 0.994796 0.989625  
 SCINet 0.381709 0.465931 4.028569 4.043189 0.981799 0.958857  
 Mamba 0.350890 0.438179 3.738423 3.747411 0.982354 0.963612  
 
Ablation test

SMAMnet-1 0.045832 0.060014 0.481401 0.482051 0.999613 0.999317  
 SMAMnet-2 0.049225 0.066823 0.520520 0.521259 0.999486 0.999154  
 SMAMnet-3 0.099172 0.127624 1.049177 1.053343 0.998701 0.996913  
 SMAMnet-4 0.114046 0.149306 1.218474 1.223810 0.998074 0.995775  
where 𝑡𝑖 and 𝑝𝑖 represent the true value and the predicted value of 
the time series, respectively. Besides, 𝑛 is the length of the time series, 
𝑑𝑖 is the difference between the actual and predicted values, and 𝑡 is 
the mean value of the time series. The values of RMSE, MAE, MAPE 
and SMAPE are close to 0, and the values of 𝜌 and 𝑅2 are close to 1, 
indicating that the model has high accuracy. In addition, the training 
and inference times of the proposed model are not the longest and 
within a reasonable range, so they are not discussed later.

5. Results and discussion

5.1. The 15 min wind speed prediction using a single variable

Table  1 summarizes the performance differences of 15 min wind 
speed prediction between the proposed model and various baseline 
models using a single variable. Among the machine learning meth-
ods, GP and DT have advantages and disadvantages under different 
prediction error evaluation metrics. Specifically, GP demonstrates a 
slight advantage in MAE, MAPE, and SMAPE, whereas DT outper-
forms slightly in RMSE, 𝜌, and 𝑅2. RMSE weights the error and is 
therefore sensitive to some large deviations, which indicates that large 
deviations are relatively rare in the prediction error of DT. In deep 
learning methods, CNN-GRU achieves the best performance gener-
ally, the inharmonious is that the MAPE and SMAPE of the GP are 
lower. Nevertheless, since evaluation metrics have different focuses 
and weighting rules, no evaluation metric is completely perfect, which 
does not affect the conclusion. Compared with the optimal value of 
each evaluation metric of the existing model, the prediction accuracy 
of the proposed SMAMnet is reduced by 53.15%, 50.25%, 47.01% 
and 48.43% in MAE, RMSE, MAPE and SMAPE respectively, and the 
deviations of 𝜌 and 𝑅2 relative to the perfect prediction are reduced by 
71.25% and 75.23% respectively.

The model architecture analysis reveals that GP and DT within 
the machine learning category exhibit higher prediction accuracy, sur-
passing even some deep learning models. This phenomenon may be 
alleviated by increasing the number of training epochs or channels 
in deep learning models. Among deep learning models, those RNN 
variants (e.g., LSTM, GRU, CNN-GRU) generally outperform attention 
mechanism and state space models, aligning with previous research. 
However, the lack of parallel computing support in RNN constrains 
their appeal for research. Consequently, despite RNN seems to perform 
superior in sequence modeling tasks, there has been a growing of 
research on attention mechanisms and state space models.
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Ablation experiments. In the ablation experiment, the prediction 
results of SMAMnet-1 are exactly the same as those of the proposed 
model, which is because the multivariate feature reconstruction module 
is inactive in univariate prediction scenarios. Across all prediction 
evaluation metrics, the performance of SMAMnet-2, SMAMnet-3, and 
SMAMnet-4 deteriorates sequentially, suggesting that both SSM and 
frequency domain selection modules are important and significantly 
contribute to the predictive accuracy of the model.

Graphical prediction results. Fig.  6 shows the prediction results 
of 15 min wind speed using a single variable for four representative 
models, GRU, Fastformer, Mamba and SMAMnet. According to the 
comparison between the predicted value and the actual value, GRU, 
Fastformer and the proposed SMAMnet can all predict the wind speed 
curve well, while the prediction accuracy of Mamba is visually poor. 
The above view is also proved by the prediction error curve. Mamba 
has the largest prediction error, and the prediction error of SMAM-
net is significantly lower than that of the other three models. The 
scatter plot illustrate that the distribution of the predicted value and 
the actual value of SMAMnet is almost the same, followed by GRU, 
Fastformer appears loose, and Mamba appears significantly scattered, 
with a large deviation from the theoretical fitting line. In addition, The 
probability distribution of the error show that GRU, Fastformer and 
SMAMnet deviate less from the center value, and SMAMnet has the 
smallest distribution variance, which is 0.057. In contrast, the distribu-
tion variances of GRU, Fastformer and Mamba increased by 122.81%, 
308.77% and 664.91%, respectively. The prediction error of SMAMnet 
is close to a normal distribution with notably concentrated pattern. The 
above graphical analysis shows that SMAMnet has excellent prediction 
performance.

5.2. The 15 min wind speed prediction by adding auxiliary variable

Table  2 describes the performance differences of 15 min wind speed 
prediction between the proposed model and the baseline models by 
adding auxiliary variable. Among the machine learning methods, DT 
has the best prediction accuracy, followed by GP, and SVM is the 
worst. Compared with the single variable prediction, a noteworthy 
phenomenon has emerged, that is, the prediction accuracy of the 
three machine learning methods generally decreases when auxiliary 
variables are added. For example, the 𝑅2 of adding auxiliary variables 
is 0.978462, 0.956802, and 0.817865 from high to low, while the 𝑅2

of single variables is 0.982105, 0.980627, and 0.826402. This shows 
that the ability of machine learning methods to process multivariate 
information in wind speed prediction tasks is limited, which means 



K. Fu et al. Applied Soft Computing 183 (2025) 113579 
Fig. 6. Graphical comparison of 15 min wind speed prediction results using a single variable in different models.
Table 2
The 15-min wind speed prediction results by adding auxiliary variable between the proposed model and the baseline models.
 Category Model MAE RMSE MAPE SMAPE 𝜌 𝑅2  
 Model proposed SMAMnet 0.033604 0.044915 0.354349 0.354671 0.999779 0.999618 
 

Existing model

SVM 0.785422 0.980321 7.552849 7.781525 0.959856 0.817865  
 GP 0.194187 0.477423 1.648043 1.708957 0.987306 0.956802  
 DT 0.136873 0.337109 1.207227 1.233719 0.997697 0.978462  
 LSTM 0.105797 0.140930 1.145893 1.149802 0.998057 0.996236  
 GRU 0.107044 0.133096 1.145653 1.147560 0.998356 0.996643 
 TCN 0.210137 0.265455 2.245054 2.257188 0.993908 0.986645  
 CNN-LSTM 0.125372 0.161987 1.341898 1.343509 0.997701 0.995027  
 CNN-GRU 0.134849 0.165665 1.443147 1.445695 0.997330 0.994799  
 BiLSTM 0.173065 0.219454 1.831705 1.830260 0.995711 0.990873  
 ConvLSTM 0.135590 0.170779 1.454889 1.460994 0.997408 0.994473  
 Transformer 0.366707 0.486179 3.909944 3.926478 0.977702 0.955203  
 Fnet 0.260477 0.351785 2.764175 2.758765 0.987999 0.976546  
 Fastformer 0.194086 0.243137 2.088560 2.094277 0.994395 0.988796  
 SCINet 0.252809 0.326598 2.769273 2.763505 0.989176 0.979784  
 Mamba 0.423232 0.557355 4.511092 4.529485 0.971747 0.941126  
 
Ablation test

SMAMnet-1 0.041287 0.052635 0.430525 0.431339 0.999713 0.999475  
 SMAMnet-2 0.038257 0.049716 0.397457 0.397990 0.999724 0.999532  
 SMAMnet-3 0.089080 0.115667 0.944838 0.947261 0.998851 0.997464  
 SMAMnet-4 0.146545 0.202981 1.510757 1.511925 0.997133 0.992191  
that it is not easy to deeply explore the correlation between multiple 
variables. In deep learning methods, GRU has the best performance 
overall, the inconsistency is that the MAE of LSTM is lower. Neverthe-
less, compared with the MAE (0.134849) of CNN-GRU, which has the 
highest prediction accuracy for a single variable, the difference in MAE 
between LSTM and GRU is minimal.

Compared with each optimal metric of baseline models, the predic-
tion accuracy of the proposed SMAMnet is reduced by 68.24%, 66.25%, 
69.07% and 69.09% in MAE, RMSE, MAPE and SMAPE respectively, 
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and the deviations of 𝜌 and 𝑅2 relative to the perfect prediction are 
reduced by 86.56% and 88.62% respectively. Moreover, the predic-
tion accuracy of the proposed model is further improved after adding 
auxiliary variables. For instance, in the case of a single variable, the 
MAE and RMSE of the proposed model are 0.045832 and 0.060014 
respectively. After adding auxiliary variables, the MAE and RMSE are 
reduced by 26.68% and 25.16% respectively.

Compared with the best results obtained by machine learning mod-
els, the prediction accuracy of five groups of deep learning models 
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Fig. 7. Graphical comparison of 15 min wind speed prediction results by adding auxiliary variable in different models.
Table 3
The 1-h wind speed prediction results using a single variable between the proposed model and the baseline models.
 Category Model MAE RMSE MAPE SMAPE 𝜌 𝑅2  
 Model proposed SMAMnet 0.190326 0.253144 2.064179 2.068763 0.993562 0.987865 
 

Existing model

SVM 0.759405 1.025385 7.000471 7.231761 0.949208 0.800894  
 GP 0.529790 0.803059 5.302893 5.368856 0.948468 0.877875  
 DT 0.439441 0.666314 4.306066 4.392537 0.972694 0.915925  
 LSTM 0.285795 0.353177 3.049839 3.086714 0.989832 0.976379  
 GRU 0.289832 0.359208 3.101312 3.123040 0.989020 0.975566  
 TCN 0.332334 0.400444 3.373073 3.429566 0.991919 0.969634  
 CNN-LSTM 0.272447 0.343030 2.924772 2.948266 0.989764 0.977717  
 CNN-GRU 0.263778 0.323311 2.844467 2.856069 0.990663 0.980205 
 BiLSTM 0.397341 0.482546 4.289181 4.317809 0.978893 0.955905  
 ConvLSTM 0.303737 0.375626 3.278175 3.302283 0.988367 0.973281  
 Transformer 0.537199 0.654601 5.735056 5.759396 0.959886 0.918855  
 Fnet 0.531048 0.645670 5.713853 5.746755 0.959899 0.921054  
 Fastformer 0.404414 0.491915 4.366010 4.387177 0.977626 0.954176  
 SCINet 0.578818 0.699685 6.150427 6.212588 0.956261 0.907292  
 Mamba 0.539039 0.656759 5.754175 5.778478 0.959570 0.918319  
 
Ablation test

SMAMnet-1 0.190326 0.253144 2.064179 2.068763 0.993562 0.987865  
 SMAMnet-2 0.210412 0.279591 2.284014 2.285861 0.992048 0.985197  
 SMAMnet-3 0.262528 0.333769 2.809857 2.833339 0.990949 0.978904  
 SMAMnet-4 0.295383 0.383006 3.123366 3.152468 0.988214 0.972221  
(LSTM, GRU, CNN-LSTM, CNN-GRU, ConvLSTM) is outstanding. No-
tably, the top five deep learning models in terms of prediction ac-
curacy are all RNN-based variants. Despite RNN perform well, their 
inability to compute in parallel constrains their potential for future 
advancement. Consequently, the researches are increasingly turning 
to attention mechanisms and state space models to enable parallel 
computation. Unfortunately, the prediction accuracy of these two types 
of parallel calculation methods is not ideal. In contrast, the proposed 
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model does not contain RNN operators and achieves the highest predic-
tion accuracy. This demonstrates the superiority of the proposed model 
from the architecture perspective.

Ablation experiments. In the ablation experiments, the prediction 
accuracy of all ablation models decreased, which proves the usefulness 
of each component in the proposed model. Specifically, taking MAE as 
an example, SMAMnet-2 and SMAMnet-1 have small changes relative 
to the proposed model, increasing by 13.85% and 22.86% respectively. 
However, SMAMnet-3 and SMAMnet-4 have large changes, increasing 
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Fig. 8. Graphical comparison of 1-hour wind speed prediction results using a single variable in different models.
Table 4
The 1-h wind speed prediction results by adding auxiliary variable between the proposed model and the baseline models.
 Category Model MAE RMSE MAPE SMAPE 𝜌 𝑅2  
 Model proposed SMAMnet 0.154367 0.206250 1.649216 1.649762 0.996310 0.991944 
 

Existing model

SVM 0.815214 1.003712 8.033816 8.207184 0.945140 0.809222  
 GP 0.616778 1.002791 6.020964 6.173434 0.913522 0.809572  
 DT 0.465248 0.649173 4.756994 4.840495 0.969723 0.920195  
 LSTM 0.302813 0.390367 3.223344 3.264587 0.987458 0.971143  
 GRU 0.274793 0.340171 2.918523 2.936640 0.989540 0.978087 
 TCN 0.356084 0.460734 3.869168 3.840443 0.980193 0.959801  
 CNN-LSTM 0.318929 0.405780 3.421159 3.365676 0.987898 0.968819  
 CNN-GRU 0.327253 0.401569 3.501740 3.515513 0.985019 0.969463  
 BiLSTM 0.378610 0.471890 4.030753 4.057913 0.980238 0.957831  
 ConvLSTM 0.335659 0.431632 3.525391 3.563393 0.985522 0.964719  
 Transformer 0.542404 0.690397 5.766334 5.816745 0.956109 0.909737  
 Fnet 0.441364 0.552441 4.705709 4.712579 0.971386 0.942206  
 Fastformer 0.398020 0.494798 4.280821 4.302853 0.977427 0.953638  
 SCINet 0.424737 0.530531 4.602512 4.619109 0.973341 0.946699  
 Mamba 0.587806 0.748860 6.203721 6.262095 0.949525 0.893803  
 
Ablation test

SMAMnet-1 0.190256 0.248256 2.046860 2.055217 0.994191 0.988329  
 SMAMnet-2 0.193219 0.254240 2.063848 2.075137 0.994146 0.987760  
 SMAMnet-3 0.249464 0.321775 2.679598 2.693408 0.991159 0.980393  
 SMAMnet-4 0.320363 0.418456 3.359455 3.369798 0.987033 0.966840  
by 165.09% and 336.09% respectively. Note that the MAE of SMAMnet-
2 is lower than that of SMAMnet-1, which means that multivari-
ate feature reconstruction significantly benefits information mining. 
Compared with the univariate prediction accuracy, both SMAMnet-
1 and SMAMnet-2 exceed the univariate prediction accuracy, which 
means that the frequency domain selection module is beneficial to 
multivariate information mining, even for reverse causality.

Graphical prediction results. Fig.  7 shows the results of 15 min 
wind speed prediction after adding auxiliary variables. Based on the 
comparison between the predicted trajectory and the actual trajectory, 
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only the prediction accuracy of Mamba is visibly poor, showing a large 
number of burrs, and other models can predict the wind speed curve 
well. The prediction error curve is consistent with the above view. 
Mamba has the largest prediction error, and the prediction error curve 
of the proposed model is significantly lower than that of the other 
models. In the scatter plot, the prediction value of the Mamba model 
deviates greatly from the theoretical fitting line, and other rules are 
consistent with the 15 min prediction diagram. In the error probability 
distribution, SMAMnet has the smallest deviation from the center value, 
which is 0.005, and the other models are more than three times higher 
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Fig. 9. Graphical comparison of 1-hour wind speed prediction results by adding auxiliary variable in different models.
than it. The distribution variance of SMAMnet is also the smallest, 
which is 0.045, and the other models are much higher than this value. 
This shows that the prediction error of the proposed model is small and 
the most compact. The above graphical analysis shows that SMAMnet 
exhibits superior prediction performance.

5.3. The 1-hour wind speed prediction using a single variable

Table  3 summarizes the performance differences of 1-hour wind 
speed prediction between the proposed model and the baseline models 
using a single variable. Machine learning methods have lagged far 
behind deep learning methods. For example, the RMSE of DT, GP, 
and SVM are 0.666314, 0.803059, and 1.025385, respectively, while 
only SCINet has an RMSE of 0.699685 for deep learning methods, and 
the RMSE of other models are all lower than 0.666314. Furthermore, 
the RMSE of CNN-GRU is as low as 0.323311, which is 51.48% lower 
than the optimal result of machine learning methods (0.666314). This 
shows that when it comes to information association of long-distance 
correlation, the availability of machine learning models is no longer 
comparable to that of deep learning models. Focusing on deep learning 
models, CNN-GRU has the best overall performance, the inconsistency 
is that TCN has a higher 𝜌. TCN and CNN-GRU are the only two models 
with 𝜌 exceeding 0.99.

Compared with optimal metric of each baseline models, the predic-
tion accuracy of the proposed SMAMnet is reduced by 27.85%, 21.70%, 
27.43% and 27.57% in MAE, RMSE, MAPE and SMAPE respectively, 
and the deviations of 𝜌 and 𝑅2 relative to the perfect prediction 
are reduced by 20.33% and 38.70% respectively. Compared with the 
15 min prediction results, the 1-hour prediction accuracy improvement 
percentage of the proposed model seems smaller. This is because the 
prediction error of 1 h is higher than that of 15 min.
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Ablation experiments. In the ablation experiment, SMAMnet-1 
also has no change, which is consistent with the 15 min predic-
tion results. The prediction accuracy of SMAMnet-2, SMAMnet-3, and 
SMAMnet-4 is getting worse in order, indicating that each component 
of the proposed model is meaningful and beneficial to the 1-hour 
prediction.

Graphical prediction results. Fig.  8 shows the result of 1-hour 
wind speed prediction using a single variable. Compared with the 
15 min wind speed, the situation does not seem optimistic. From the 
comparison between the predicted value and the actual value, the 
proposed model can predict the wind speed curve well, but some 
prediction results of GRU have burrs, and there is a deviation similar 
to translation between the predicted value and the actual value of 
Fastformer and Mamba. From the prediction error curve, SMAMnet 
has the smallest error. Turning to the scatter plot, the fitting curves 
of the predicted value and the true value of all models are deviated, 
and the distribution of the predicted value and the true value of the 
proposed model is relatively close. Through the quantification of the 
error probability distribution, SMAMnet has the smallest deviation from 
the center value and the smallest distribution variance, and the other 
models have significant increases. Therefore, all these evidences show 
that the proposed model has excellent prediction accuracy.

5.4. The 1-hour wind speed prediction by adding auxiliary variable

Table  4 describes the performance differences of 1-hour wind speed 
prediction between the proposed model and the baseline models by 
adding auxiliary variable. Similar to the 15 min prediction results, 
the prediction accuracy of the machine learning method is worse after 
adding auxiliary variables. Therefore, the machine learning method is 
no longer analyzed in detail. GRU has the best prediction accuracy, 
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and no discordant prediction metrics appear. Only some deep learn-
ing models (such as GRU, BiLSTM, and Fnet) have improved their 
prediction accuracy after adding auxiliary variables. However, please 
note that the prediction accuracy of Fnet and SCINet has increased 
relatively significantly after adding auxiliary variables. The MAE of 
Fnet has dropped from 0.531048 to 0.441364, and the MAE of SCINet 
has dropped from 0.578818 to 0.424737.

Compared with the optimal value of each evaluation metric of the 
existing model, the prediction accuracy of the proposed SMAMnet is re-
duced by 43.82%, 39.37%, 43.49% and 43.82% in MAE, RMSE, MAPE 
and SMAPE respectively, and the deviations of 𝜌 and 𝑅2 relative to the 
perfect prediction are reduced by 64.72% and 63.24% respectively. The 
1-hour prediction is not as good as the 15 min prediction because of the 
higher uncertainty.

Combined with the 1-hour prediction results of a single variable, the 
percentage increase in prediction accuracy is significant after adding 
auxiliary variables. This is because the baseline model performs or-
dinary after adding auxiliary variables, while the proposed model 
achieves higher accuracy. In contrast, the MAE of the proposed model’s 
single variable prediction is 0.190326, and after adding auxiliary vari-
ables, the MAE drops to 0.154367, that is, a decrease of 18.89%. 
However, the single variable prediction accuracy of the proposed model 
is already far ahead, which means that the proposed model is not 
only good at mining variable correlations, but the architecture itself 
is worthy of attention.

Ablation experiments. In the ablation experiment, the prediction 
accuracy of SMAMnet-1, SMAMnet-2, SMAMnet-3, and SMAMnet-4 
deteriorated in turn. Taking MAE as an example, they increased by 
23.25%, 25.17%, 61.60%, and 107.53% respectively. This means that 
the importance of the modules involved in the ablation model increases 
in turn. It is worth noting that, unlike the prediction results of adding 
auxiliary variables in 15 min, the prediction effect of SMAMnet-2 is 
not as good as that of SMAMnet-1, which shows that SSM plays an 
important role in relatively long-term predictions. In addition, the 
measured data is often heterogeneous, so the data itself will also have 
an impact on the modeling process.

Graphical prediction results. Fig.  9 describes the results of adding 
auxiliary variables for 1-hour wind speed prediction. Through the 
comparison of four types of graphical methods, including comparison 
of predicted values with actual values, prediction error curve, scatter 
plot and error probability distribution, only SMAMnet meets good 
prediction expectations. This shows that the proposed model is most 
suitable for 1-hour wind speed prediction tasks.

6. Conclusion

This paper addresses limited variables in wind speed prediction by 
proposing the use of reverse causality, incorporating auxiliary vari-
ables like wind power. A high correlation (0.976) was found between 
low-frequency wind speed and wind power components. Based on 
this, we proposed SMAMnet, a multivariate prediction model featur-
ing an improved attention mechanism and a feature reconstruction 
module. Its novelty is characterized by the development of an adap-
tive frequency-domain selected attention weight operator to adaptively 
parse meaningful information in different frequency domain intervals. 
Experimental results indicate that with the inclusion of auxiliary vari-
ables, SMAMnet significantly enhances the accuracy of both 15 min 
and 1-hour wind speed predictions, outperforming the best results of 
compared baseline that do not utilize auxiliary variables.

The research is helpful for the wind energy utilization. The limita-
tion is that the universality of adding extra real or simulated auxiliary 
variables to univariate time series prediction tasks has not been proven. 
In the future, we intend to explore the adaptability of this approach to 
other renewable energy fields and widely deployed [55] in wind farms.
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